
National Grid Demand Forecasting

Case 24-G-0248 Technical Conference

July 30, 2024

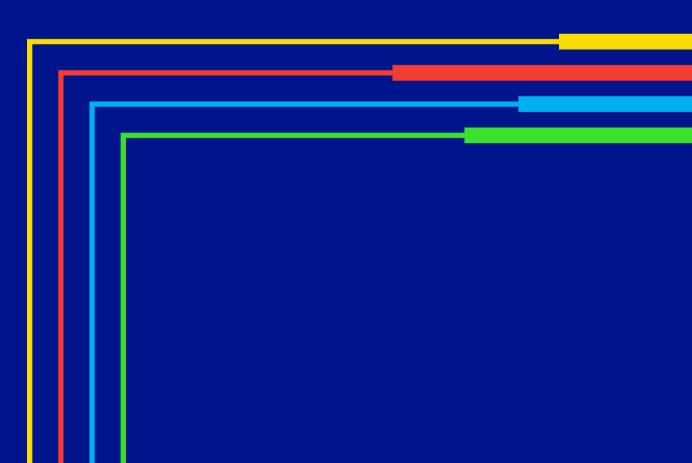
Welcome to All

Agenda

- 1. Introduction & Welcome
- **2.** Overview of Demand Forecasts

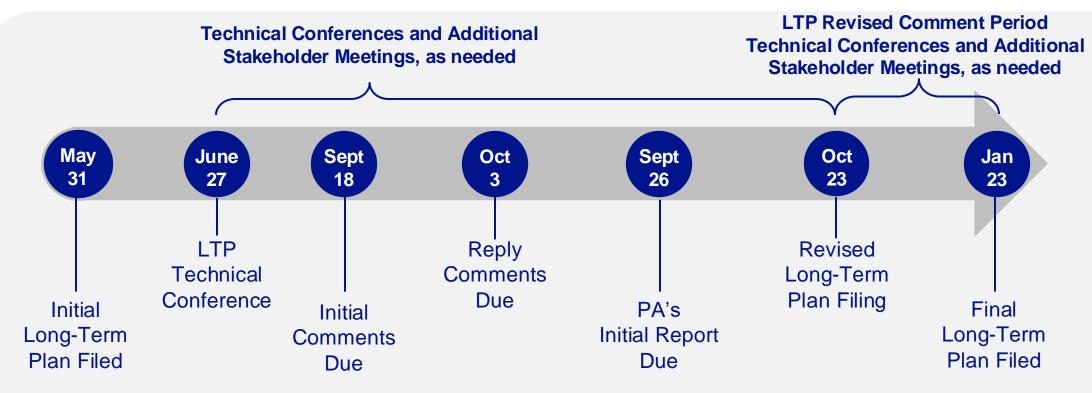
3. Q&A

Meeting Logistics:

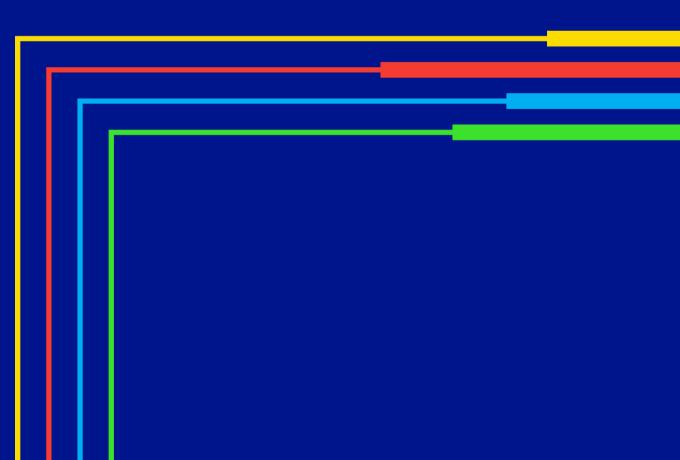

Q&A will be held at the end of the presentation to address matters related to the material presented.

Please use the "raise hand" feature of the meeting platform.

DPS Staff will be moderating the Q&A portion of today's conference.


Introduction

nationalgrid


Introduction to National Grid's Initial LTP

- National Grid filed our LTP for KEDNY/KEDLI/NMPC on 5/31/24; <u>Case 24-G-0248</u>; materials available on **ngridsolutions.com**
- We are working on our revised LTP, which will incorporate our latest forecast of customer requirements
- The schedule below is updated to reflect the extended comment and reply comment period

Demand Forecast

Our Long-Term Plan Scenarios

Reference Case

- Based on National Grid's main planning scenario extended to 2050
- · Can be considered business-as-usual, but it does account for the impact of:
 - · Demand-side management savings
 - All-Electric Buildings Act, NYC Local Laws 97 and 154

Clean Energy Vision (CEV)

- · Illustrates National Grid's vision for the gas transition
- Fully eliminates fossil fuels before 2050; Consistent with CAC Scoping Plan gas transition recommendations
- Includes rapid expansion of electrification and efficiency/DSM
- · Gas network transformed to play complementary role delivering clean alternative fuels

Accelerated Electrification (AE)

- Illustrates a high-electrification gas transition
- Based on Climate Action Council Integration Analysis Scenario 3
- Includes significant volumes of low-carbon fuels, but less than CEV
- Includes greater levels of electrification than CEV

National Grid

Forecasting is key to understanding the trajectory gas demand over the next two decades

Short-term Planning

The Reference Case shows a projected increase in gas demand. Uncertainty bands around this case show the potential range of over or under forecasting in the near term

Long-term Planning

The analysis in the LTP looks at the Reference Case, Clean Energy Vision, and Accelerated Electrification scenarios, helping the company prepare for a net-zero future

What types of forecasts are produced?

1. Retail Forecast = Monthly demand at customer meters in normal year

Used for Rate setting

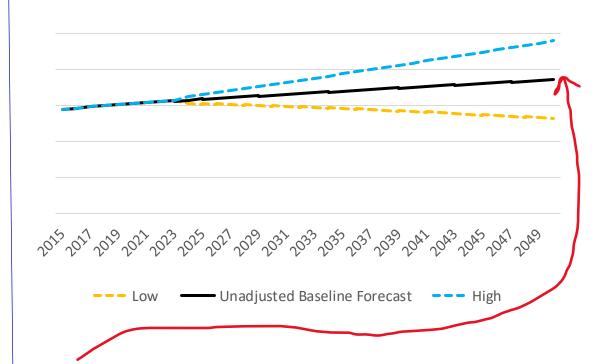
2. Wholesale Forecast = total daily requirement at city gate in normal and design year

Used to ensure adequate gas supply for winters

3. Design Day = coldest day for which the Company plans

Used to ensure adequate capacity to maintain integrity of distribution system during high demand periods

How do we forecast demand?

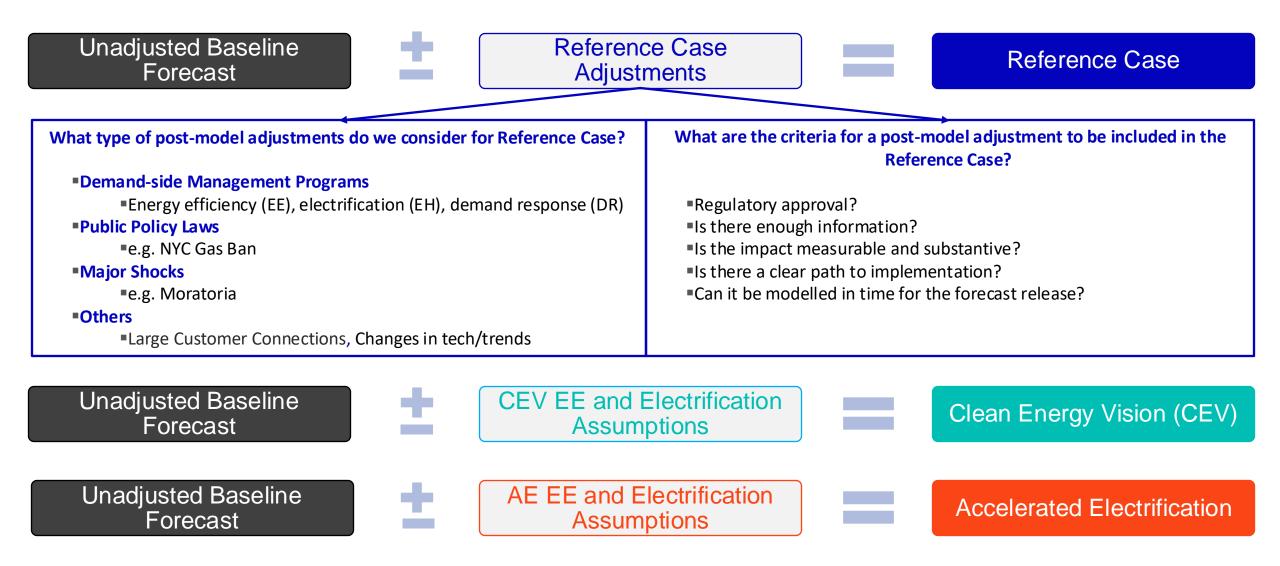

Q. How do we forecast retail demand?

A. Model the relationship between historical usage/customer count to historical economic, price, weather, and temporal trends. These models then use projected economic/prices to forecast customer count/UPC

2

Q. How do we forecast wholesale and design day demand?

A. Retail forecast is modified for lost and unaccounted for gas and billing lags and then allocated to the daily-level for normal and design year weather profiles using an equation that estimates the relationship between daily temperature and sendout


Q. Is this unadjusted forecast our best guess of future demand?

A. No, it does not take into account accelerations in DSM programs, new laws, any large customer additions, etc

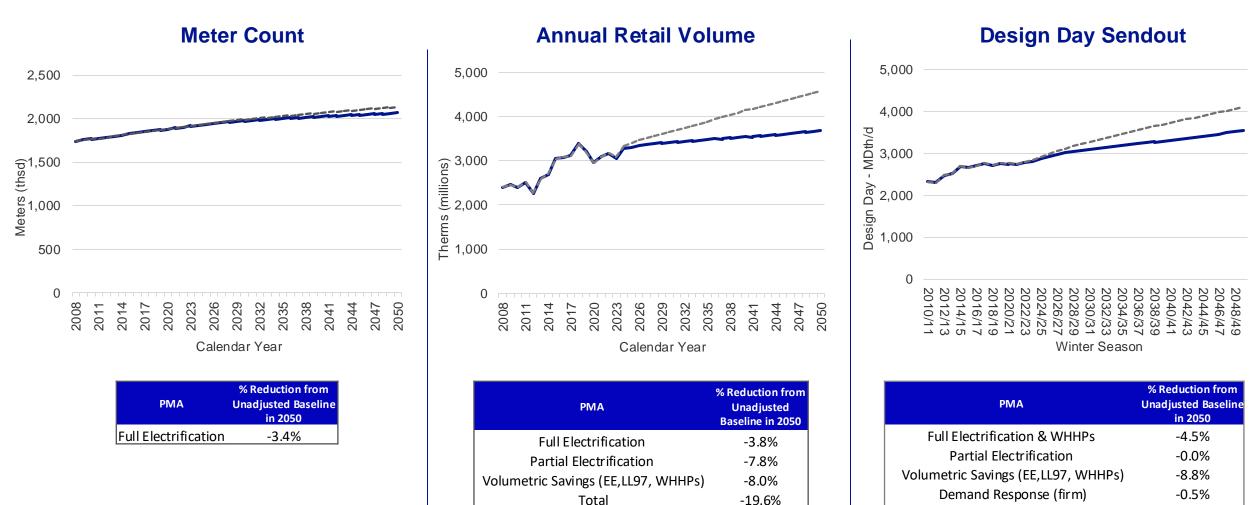
National Grid

Example – Unadjusted Forecast and Economic Scenarios

Post-Modeling Adjustment Process

Summary of Assumptions - New York

Reference Case Post-Model Adjustments

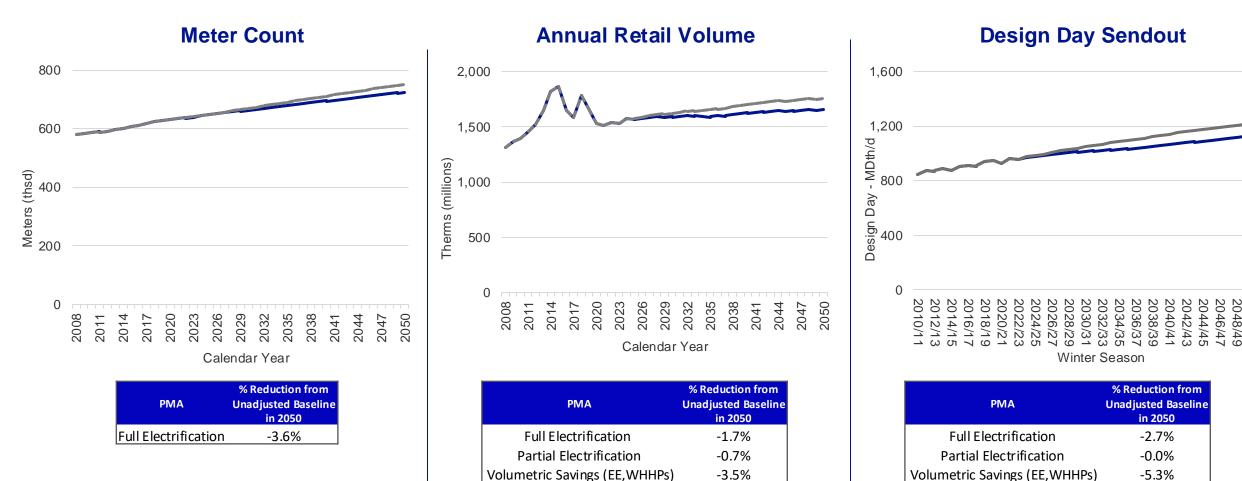

- Post Model Adjustments:
 - 1. Energy Efficiency
 - 2. Electrification
 - 3. Demand Response
 - 4. Local Law 97
 - 5. Local Law 154
 - 6. All-Electric Building Act (AEB Act)
- Base economic outlook from Moody's Economics (this forecast uses March 2023 vintage)
- Off-system saturation limits included

Clean Energy Vision & Accelerated Electrification Post-Model Adjustments

- Post Model Adjustments:
 - 1. Energy Efficiency
 - 2. Electrification
- Base economic outlook from Moody's Economics (this forecast uses March 2023 vintage)
- Off-system saturation limits included

National Grid

Reference Case – Downstate New York (KEDLI & KEDNY)



National Grid

-13.8%

Total

Reference Case – Upstate New York (NMPC East Gate & West Gate)

Total

-6.0%

National Grid

-0.02%

-8.0%

Demand Response (firm)

Total

Economic conditions will drive growth of the gas system

Economic Development

 Reindustrialization will be a key source of economic strength, being both a direct and indirect source of increased gas demand in UNY

Price Differential for natural gas

 Natural gas prices are projected to remain the cheapest energy source for heating compared to electricity and oil

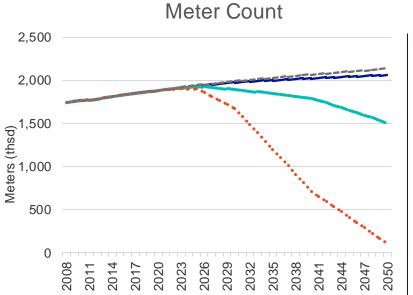
Housing Market

- History of underbuilding in a very tight market where demand for housing outstrips the supply of available units
- The old age of the housing stock in the upstate region also presents opportunities for renovation and/or reconstruction

Total customer growth can be broken down into three sources

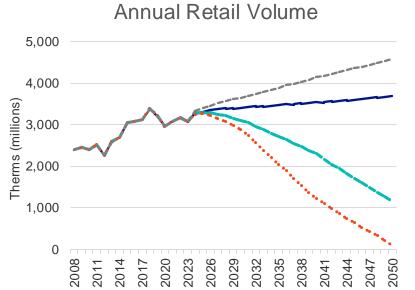
1. Low-use migrations

2. Off-system conversion

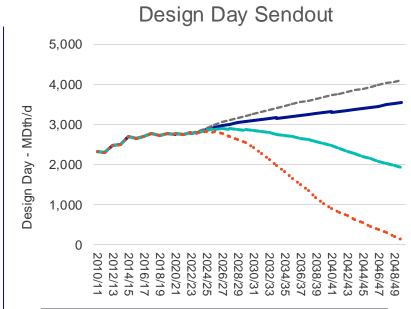

• Forecasts factors in the potential for saturation of off-system conversions

3. New Construction

 Limited by Local Law 154 and All-Electric Building Act


Summary of Off-System Conversion for Long-term Plan Forecasts				
Company	Rate Group	Upper Limit on Off-System Conversions (meters)	Is limit been reached within the forecast horizon?	
NMPC - East Gate	Residential Heating	40,926	No	
	Commercial	14,397	No	
NMPC - West Gate	Residential Heating	51,309	No	
	Commercial	19,333	No	
KEDLI	Residential Heating	190,708	No	
	Commercial	21,462	No	
	Multi-family	3,324	No	
KEDNY	EDNY Residential Heating		Yes, in CY2034	
	Commercial	8,866	No	
	Multi-family	23,446	No	

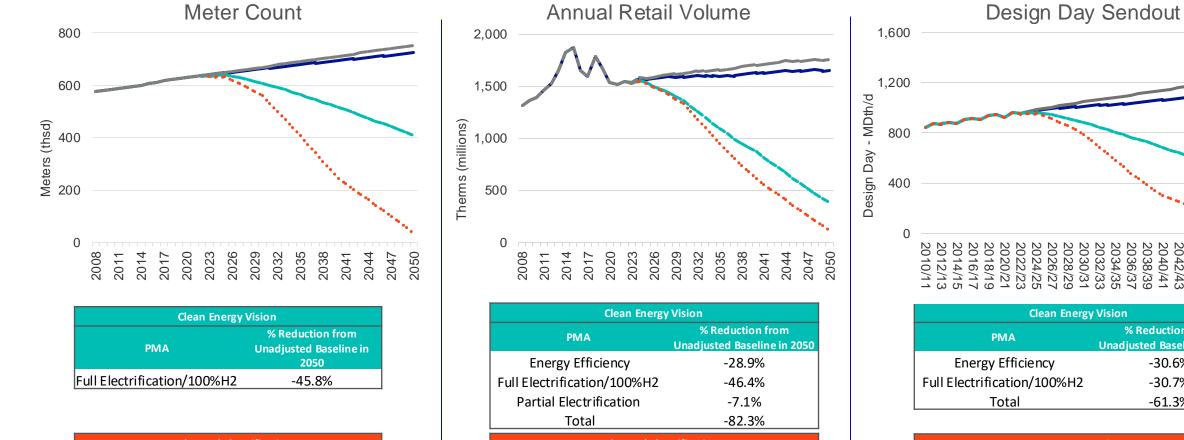
Scenario Comparison – Downstate New York (KEDLI & KEDNY)


Clean Energy Vision		
РМА	% Reduction from Unadjusted Baseline in 2050	
Full Electrification/100%H2	-29.7%	

	Accelerated Electrification		
PMA % Reduction from Unadju			
		Baseline in 2050	
	Full Electrification/100%H2	-96.8%	

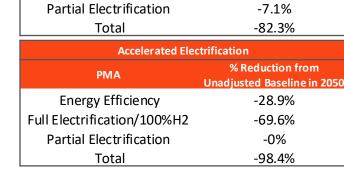
Clean Energy Vision			
РМА	% Reduction from Unadjusted Baseline in 2050		
Energy Efficiency	-29.8%		
Full Electrification/100%H2	-31.1%		
Partial Electrification	-13.9%		
Total	-74.8%		

Accelerated Electrification			
PMA % Reduction from Unadj Baseline in 2050			
Energy Efficiency	-29.8%		
Full Electrification/100%H2	-68.0%		
Partial Electrification	-0.0%		
Total	-97.8%		

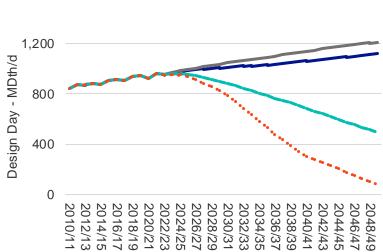

Clean Energy Vision			
PMA % Reduction from Unadjusted Baseline in 2050			
Energy Efficiency	-30.2%		
Full Electrification/100%H2	-22.6%		
Total	-53.3%		

Accelerated Electrification			
PMA % Reduction from Unadjust Baseline in 2050			
Energy Efficiency	-30.2%		
Full Electrification/100%H2	-66.1%		
Total	-96.3%		

National Grid


Reference Case Clean Energy Vision Unadjusted Baseline Forecast

Scenario Comparison – Upstate New York (NMPC East & West Gate)

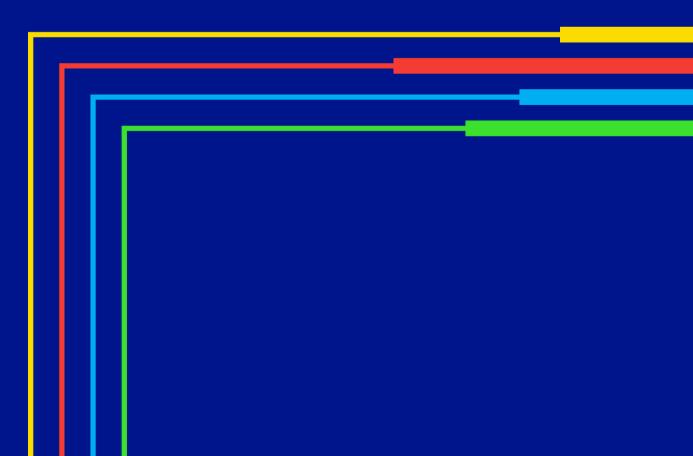


Reference Case

Accelerated Electrification	
	% Reduction from
РМА	Unadjusted Baseline in
	2050
Full Electrification/100%H2	-95.3%
· · · · · · · · · · · · · · · · · · ·	

Clean Energy Vision

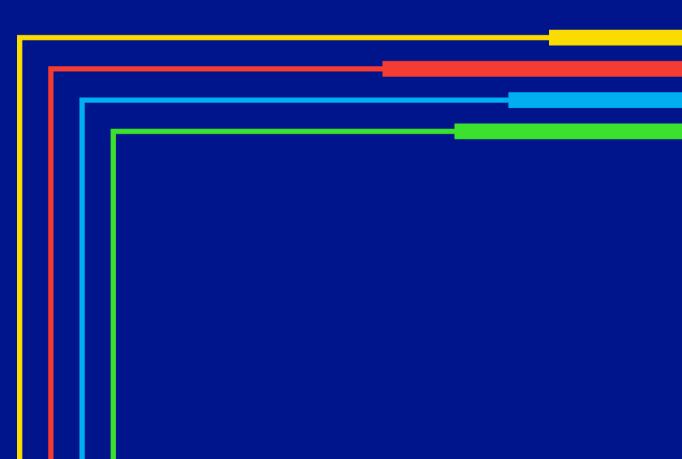
Clean Energy Vision			
PMA % Reduction from Unadjusted Baseline in 205			
Energy Efficiency	-30.6%		
Full Electrification/100%H2	-30.7%		
Total	-61.3%		


Accelerated Electrification		
PMA % Reduction from Unadjusted Baseline in 20		
Energy Efficiency	-30.6%	
Full Electrification/100%H2	-66.1%	
Total	-96.7%	

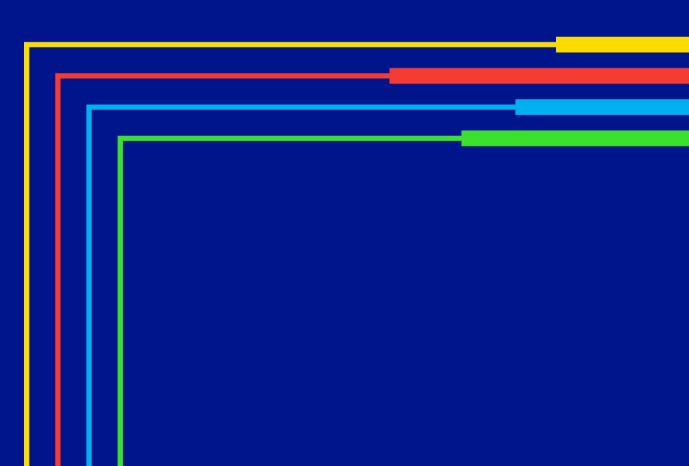
National Grid

Accelerated Electrification Unadjusted Baseline Forecast

Stakeholder Collaboration



We Welcome Your Involvement

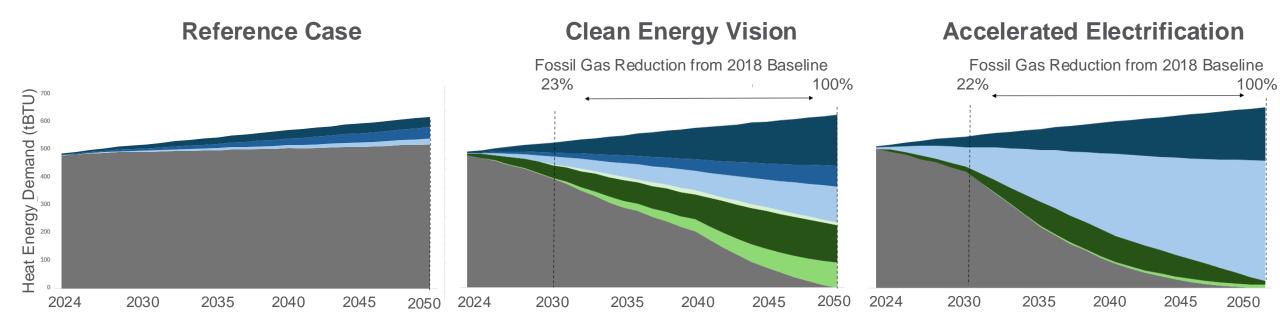

• National Grid and DPS Staff are eager to hear your comments about our LTP

- We believe the best path forward is for parties to bring feedback and suggestions to improve our LTP.
- We would appreciate the opportunity to understand your position regarding a clean, fair, and affordable energy transition.
- PA Consulting will be working with DPS Staff to facilitate the Information Request process.
- We invite your full participation in this and all future technical sessions. Requests for technical session topics should be routed through PA & DPS Staff.
- This and future presentations will be posted to ngridsolutions.com

Q&A

Appendix

Weather Profiles for Initial LTP Forecasts


Normal weather is used for ratemaking purposes.

- For Downstate NY, normal Heating Degree Days ("HDD") for any given calendar day within a month were based on the average of the degree days for that calendar day over the 30-year period, ending June 30, 2018. KEDNY and KEDLI forecasts are developed using the KNYC Central Park weather station.
- The Companies' Upstate NY normal HDD are developed using the KALB weather station for Albany and the KSYR weather station for Syracuse. Each normal year was based on 30 years of data from January 1, 1990 – December 31, 2019.

Design year weather ensures that the Companies have adequate seasonal natural gas resources.

- The Downstate NY design year was based on a once-in-forty-year probability using historical data from calendar years July 1978 – June 2018.
- The Upstate NY design years (for KALB and KSYR) are based on a once-in-forty-year probability using historical data from calendar years 1980 2019.
- Design day weather ensures that the Company has adequate daily pipeline and supplementals deliverability to support distribution system integrity. Both Downstate and Upstate NY rely on actual observed coldest days as their design days.
- The Downstate NY design day is 65 HDD.
- The Upstate NY design day is 75 HDD for KALB and KSYR.

Energy Resource Volumes by Scenario

Fossil Gas 100% Hydrogen RNG Blended H2 Full Building Electrification Partial Building Electrification Energy Efficiency

National Grid

Growth Breakdown through 2050 - Reference Case

KEDNY - Meter Growth Breakdown - 2050 Cumulative				
Residential Heating Commercial Multi-family				
Low-use Migrations	48%	20%	9%	
Off-System Conversions	20%	52%	40%	
New Construction	32%	27%	51%	

KEDLI - Meter Growth Breakdown - 2050 Cumulative			
Residential Heating Commercial Multi-family			
Low-use Migrations	30%		
Off-System Conversions	61%	84%	33%
New Construction	8%	16%	67%

NMPC East Gate - Meter Growth Breakdown - 2050 Cumulative				
	Residential Heating	Commercial	Multi-family	
Low-use Migrations	8%			
Off-System Conversions	57%	46%		
New Construction	35%	54%		

NMPC West Gate - Meter Growth Breakdown - 2050 Cumulative				
	Residential Heating	Commercial	Multi-family	
Low-use Migrations	13%			
Off-System Conversions	54%	46%		
New Construction	33%	54%		

National Grid